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Neuronal response onset latency provides important data on the information processing
within the central nervous system. In order to enhance the quality of the onset latency
estimation, we have developed a ‘double sliding-window’ technique, which combines the
advantages of mathematical methods with the reliability of standard statistical processes.
This method is based on repetitive series of statistical probes between two virtual time
windows. The layout of the significance curve reveals the starting points of changes in
neuronal activity in the form of break-points between linear segments. A second-order
difference function is applied to determine the position of maximum slope change, which
corresponds to the onset of the response. In comparison with Poisson spike-train analysis,
the cumulative sum technique and themethod of Falzett et al., this ‘double sliding-window,
technique seems to be a more accurate automated procedure to calculate the response
onset latency of a broad range of neuronal response characteristics.

© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Peristimulus time histograms (PSTHs; developed by Gerstein
and Kiang, 1960) are commonly used to visualize the effect of a
stimulus on the neuronal activity in extracellular recordings.
Estimation of the neuronal response onset latency may
provide important data concerning the information flow
within the central nervous system (Berson, 1987; Dreher and
Sefton, 1979). Despite the fact that the response onset latency
comprises a source of data with which to resolve the
information coding in the central nervous system alternative
to thewell-discussed properties of neuronal responses, i.e. the
neuronal firing frequency, response duration and stimulus
threshold, only a small proportion of neuronal recordings are
generally analyzed from this aspect, possibly because of the
weakness of automated latency estimation methods.
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In the automation of the estimation of latency, a basic
problem is to extract a signal from the spontaneous activity,
which is determined by environmental and physiological
noise. Mathematically, two solutions exist: counting the
number of impulses discharged in some fixed interval
(counting method) and detecting the time for the discharge
of a fixed number of impulses (timing method) (Wandell,
1977). Poisson spike-train analysis is currently the most
frequently applied method of latency estimation (Legéndy
and Salcman, 1985). The neuronal response onset is calculated
by averaging the time positions of some arbitrarily chosen
bursts in the proven trials. The cumulative sum (CUSUM)
technique was the first method in which the latency of
neuronal responses was calculated via the analysis of PSTHs
(Ellaway, 1978). The value of this method lies in the detection
of change in themean level of the activity. Since the change in
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ig. 1 – Estimation of neuronal response onset latency with
he double sliding-window technique. (a) Peristimulus time
istogram (PSTH) of an excitatory neuronal response. A PSTH
onsists of a prestimulus and a peristimulus period; the
ime-scale is presented on the abscissa (ms). The duration of
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the mean could be small relative to the variation in the
individual values, an arbitrary threshold level (usually 1, 2 or 3
standard deviations (SD) above the mean of the spontaneous
activity condition) is often chosen to quantify the start-point
of the increment in the CUSUM curve (Ouellette and Casa-
nova, 2006). The CUSUM technique has theweakness that it is
not possible to determine precisely which temporal compo-
nent of the response should be analyzed. Accordingly, Falzett
et al. (1985) introduced a combination of the CUSUM tech-
nique with a second-order difference (SOD) function. How-
ever, despite the numerousmethods proposed (Table 1), none
of them can be applied reassuringly as a universal latency
estimation method.

Is it possible to develop an estimation method for onset
latency whereby the estimation becomes a clear objective
statistical procedure? Can this new statistical function con-
tribute to the applicability and reliability of automated latency
estimation? Is it possible to keep the computational time-cost
low? In an attempt to answer these questions, we have
developed a ‘double sliding-window’ technique with which to
calculate the neuronal response onset latencies. The double
sliding-window technique analyzes trial-by-trial data on
PSTHs and combines the advantages of mathematical meth-
ods with the reliability of standard statistical processes. In
order to check on the validity of the technique, we calculated
the visual response onset latencies of neuronal responses
obtained in a large number of extracellular single-unit
recordings and compared them with visually quantified
latencies and with the latencies provided by Poisson spike-
train analysis, the CUSUM technique, and the advanced
method of Falzett et al.
isual stimulation is indicated by a thick horizontal black line
bove the PSTH. The beginning of visual stimulation is the
ero time point. The ordinate demonstrates the cumulated
pike count in each 5 ms wide bin. The solid black clamp
bove the PSTH denotes the position of the 300 ms wide
eference window, where it overlaps the highest neuronal
2. Results

For measurement of the latency of neuronal response onsets,
we developed a software program, the double sliding-window
Table 1 –Methods for estimating neuronal response onset
latencies

χ2-test within a different
time window

(Fournier et al., 1986;Marque et al., 2001)

Significance level set to a
specific threshold of
spontaneous activity

(Tamura and Tanaka, 2001; Edwards
et al., 2003)

Cumulative sum
technique (CUSUM)

(Ellaway, 1978; Butler et al., 1992;
Forlano et al., 1993; Rolls et al., 1993;
Ouellette and Casanova, 2006)

Advanced CUSUM
(method of Falzett et al.)

(Falzett et al., 1985; Day and Sibbald,
1989; Akeyson et al., 1990; Knuepfer and
Holt, 1991; Holt et al., 1991; Drew et al.,
1996; Hernandez et al., 2002)

CUSUM with Monte
Carlo technique

Ushiba et al. (2002)

Poisson spike-train
analysis

(Legéndy and Salcman, 1985;
Hanes et al., 1995; Sáry et al., 2006)

Maximum likelihood
estimation

(Seal et al., 1983; DiCarlo and Maunsell,
2005)

Artificial neuronal
network

Churchward et al. (1997)

ctivity. (b) Significance curve calculated by the series of
tests. Four specific positions of the 300 ms wide sample
indow corresponding to different activity levels of the
euron are indicated by dotted clamps, while the arrows
enote the corresponding significance values. The first two
ositions relate to cases when the sample window contains
nly pure spontaneous activity, while the third contains the
ransition between the pure spontaneous activity and the
euronal response to visual stimulation. The fourth marker
hows the final position, when the reference and the sample
indows overlap each other (the significance level of the
test is 1). The ordinate denotes the result of the series of
aired t tests between the activity in the reference window
hown in part A) and the activity within each actual sample
indow in 5 ms (one bin) steps. (c) Curve of the second-order
ifference function (SOD) derived from the significance curve
=30). The ordinate demonstrates the positivity or
egativity of the SOD results. The minimum point of this
urve coincides with the maximum slope change of the
ignificance curve, and thus approximates to the onset of the
euronal response. (d) PSTH with marked response onset
hick vertical line). Accordingly, the visual response onset
tency of the demonstrated neuron was 160 ms.
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technique, which slides two windows along the PSTHs. The
first window (reference window) slides through the peristi-
mulus period in 1 bin steps, and selects the portion that
represents the maximum (or the minimum) frequency
(depending on the excitatoric or inhibitoric characteristic of
the neuronal response). A second window (sample window)
then slides through, also in 1 bin steps. After each step, the
program calculates the significance level between the spike
frequencies of the two windows with the t test. The latency of
the responses is calculated from the time function of these p
values. A curve is fitted to the p values, and the response onset
latency is provided as the time interval between the start of
the stimulation and the first point of the rising segment of the
p curve, which is estimated by a SOD function (Fig. 1).

2.1. Response onset latency estimation using the double
sliding-window technique

A total of 681 extracellular single-unit recordings (PSTHs) were
analyzed by using the double sliding-window technique. All
these PSTHs were selected from among our earlier recordings
Fig. 2 – Application of the double sliding-window technique. Ca
neuronal responses in the anterior ectosylvian visual area (a), th
inhibitory response in the substantia nigra pars reticulata (d). Ea
PSTHs (uppermost part), the trial-by-trial activity in raster form (
one neuronal excitation; middle part) and the two calculated cur
(black). The arrows show the minimum point of the SOD curve th
the same as in Fig. 1.
with regard to two criteria: the PSTH had to demonstrate a
significant neuronal response to visual stimulation, and the
response onset latency from the PSTH could be determined by
subjective visual estimation. Latencies were calculated for
each neuronal response subjectively by visual evaluation and
by using the double sliding-window technique with 135
different parameters (10 different window widths, from 10 to
100 bins, and the possible corresponding n values in the SOD
function, from 2 to 50; Fig. 3a). Fig. 2 depicts the characteristics
of three different excitatory (Figs. 2a–c) and one inhibitory
(Fig. 2d) neuronal response, with their associated significance
and the SOD curves produced by the latency analysis. The
automatically determined response onsets are indicated by
vertical arrows.

The difference between the subjectively determined laten-
cy and the latency estimated by using the double sliding-
window technique was defined as the estimation error (EE) of
a measurement. If the n value was higher than a limit (10–12)
and the window width was in an appropriate range (30–60
bins), there was not a significant difference between the
computed EEs (Fig. 3a). Furthermore, calculation of themedian
lculation of the visual onset response latencies of excitatory
e caudate nucleus (b) and the superior colliculus (c), and an
ch part contains the summed neuronal activity in the form of
each row visualizes one trial, where each small dash means
ves (lower part), the significance (gray) and the SOD curve
at depicts the neuronal response onsets. The conventions are
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of the acquired onset latencies by using the highest mathe-
matically possible n values with different window widths
furnishes higher internal stability, this smoothing leading to
the most accurate onset latencies. Use of the median instead
of the mean to estimate the central tendency is more accu-
rate in this case, since sporadic disturbances in a data set
(estimation inaccuracy for a single n value) distort the final
latencies less. The mean of the medians of the EEs when the
double sliding-window technique was used was 35.98 ms
(n=681; SD: ±58.48 ms).

2.2. Response onset latency estimation with other automated
methods

The visual response onset latencies of the same 681 neuronal
recordings (PSTH) were also estimated by using Poisson spike-
Fig. 3 – Effectivities of the four investi-
gated latency estimation methods. The
double sliding-window technique (a)
was tested by using 135 different
parameter combinations (10 different
window widths from 10 to 100 bins
and the corresponding possible SOD
parameters) on 681 extracellular
single-unit recordings. A solid
color-shaded surface was constructed
from the means of the estimation errors
(EEs) of the 681 neurons as a result of
using each 135 parameter combination;
the ±1 SD range is marked with the two
meshes (the lowest limit for this range
was defined as 0 since the result of
the EE calculation equation cannot be
negative). The measurement parameter
combinations that were constantly used
to calculate the mean of the medians of
the EEs (see part d) are marked with red
dots. The CUSUM method (b) was also
tested on the same 681 recordings using
15 different parameters 1–15 SDs above
the mean firing rate as threshold level.
The mean+9 SD threshold level
(denoted by an arrow) provided themost
accurate latency values. The technique
of Falzett et al. (c) was tested with 15
different SOD parameters on 681
recordings, and a continuous graph was
constructed from the calculated average
EE values of the acquired data in ms.
The mean of the medians of the EEs
(when n=22–30 was applied, which
yielded themost accurate latency result)
is indicated as a discrete range on the
right side of the graph. (d) Comparison of
the effectiveness of the four latency
estimation methods, using the most
accurate parameter(s) for each method.
The ordinate shows the EEs inms. Thick
horizontal lines denote the mean EE.
From left to right, the EEs of the double
sliding-window technique, Poisson
spike-train analysis, the CUSUM
procedure and the technique of Falzett
et al. are presented, while the whiskers
show the ±1 SD EE range for each
method.



145B R A I N R E S E A R C H 1 1 7 8 ( 2 0 0 7 ) 1 4 1 – 1 4 8
train analysis, the CUSUM method and the extension de-
scribed by Falzett et al. (1985). In some cases, Poisson spike-
train analysis estimated the response onset before the onset
of the stimulus. We excluded these registrations from our
comparison (none of the other methods could provide
‘negative’ latencies for technical reasons). The mean EE of
the Poisson spike-train analysis was 154.41 ms (n=576; SD:
±141.81 ms; Fig. 3d).

In CUSUM analysis, 1, 2 or 3 SDs above the mean spontane-
ous activity are usually used as the threshold level for this
process (Ouellette and Casanova, 2006; Butler et al., 1992). We
found that this method tested with 1–3 SDs thresholds
consistently underestimated the latencies. We therefore tested
our data set with 15 different SD parameters (the thresholdwas
varied in the interval 1–15SDs). Themost accurate latencies and
therefore the smallest EE could be calculated by using 9 SDs as
threshold. Below and above this threshold, the EEs were higher
(Figs. 3b, d). The mean EE with the most accurate (9 SDs) thres-
hold was 85.26 ms (n=681; SD: ±120.11 ms).

The method of Falzett et al. combined the advantages of
the CUSUMprocess with the same SOD function as used in our
double sliding-window technique. Fig. 3c illustrates the mean
EEs on the use of different n values of the SODs. Similarly as
with the double sliding-window technique, the method of
Falzett et al. provides the most accurate response onset
latencies when high n values are used (nN22; Figs. 3c, d). The
median calculation of the acquired onset latencies using
different high n values (n=22–30) provided the most accurate
values. The mean of the medians of the EEs by the method of
Falzett et al. was 62.87 ms (n=681; SD: ±99.98 ms).

2.3. Comparison of the confidence of the double
sliding-window technique with Poisson spike-train analysis,
the CUSUM procedure and the method of Falzett et al.

Since the EE data sets did not reveal normal distribution, we
used the Wilcoxon test for the correlated samples to compare
the effectiveness of the double sliding-window techniquewith
that of Poisson spike-train analysis, the CUSUMprocedure and
the method of Falzett et al. The distributions of the EEs
observedwhen the four investigated techniqueswere used are
presented in Fig. 3d. The double sliding-window technique
appears to be themost accurate automated latency estimation
method in the sense that the EE provided by this technique
(mean: 35.98 ms; n=681; SD: ±58.48 ms) was significantly
smaller (in all cases pb0.01) than those resulting from Poisson
spike-train analysis (mean: 154.41ms; n=576; SD: ±141.81ms),
the CUSUMprocedure (mean: 85.26ms; n=681; SD: ±120.11ms)
and the advanced method of Falzett et al. (mean: 62.87 ms;
n=681; SD: ±99.98 ms).
3. Discussion

The new method described here, the double sliding-window
technique, allows the rapid, reproducible, accurate and
automated estimation of the neuronal response onset latency.
Our results show that the double sliding-window technique
can yield more accurate latency data than Poisson spike-train
analysis (Legéndy and Salcman, 1985), the CUSUM procedure
(Ellaway, 1978) and the method of Falzett et al. (1985) in the
sense that the EEs of the latencies calculated by the double
sliding-window technique are significantly smaller than those
of these most commonly used methods. Furthermore, the
double sliding-window technique seems to be able to deter-
mine the latency of both excitatory and inhibitory neuronal
responses since it detects conformity changes between two
data sets regardless of the direction of change.

Poisson distribution (Legéndy and Salcman, 1985) expres-
ses the probability of a number of rare events occurring in a
fixed period of time if these events occur with a known
average rate, and are independent of the time since the last
event. The weakness of Poisson spike-train analysis, i.e. the
overestimation of the response latency, may occur for several
reasons. The neuronal excitations in a spike train are not
independent of each other, and if the spontaneous activity of a
single unit is relatively high, and thus the estimated param-
eter λ of the method is higher than a particular limit, the
Poisson spike-train analysis may not work properly. Poisson
spike-train analysis is suitable only for the calculation of onset
latencies of neurons with low or no spontaneous activity.
However, a noteworthy population of neurons has high
spontaneous activity, and for these, Poisson spike-train
analysis furnishes inaccurate latencies.

As concerns the CUSUM method (Ellaway, 1978), it appears
that the most commonly used 1 or 2 SDs above the main
spontaneous discharge rate chosen as threshold level is not
sufficient to calculate the response onset latency. The mean
+9 SD threshold level allows an estimation of the most
accurate onset latencies whereas the mean+2 SD threshold
level results in an underestimation of the response onset
latencies. However, even if we choose a statistically abnormal
high 9 SD threshold level, the CUSUM method is still a poorly
reliable technique. In the modification of the CUSUM proce-
dure (method of Falzett et al., 1985), the most sensitive
problem is the choice of the appropriate n value for the SOD.
A 100 ms binwidth and n=3–5 were chosen in the original
publication of Falzett et al. as producing the most reliable
onset latencies. In our analysis we used a 5 ms binwidth, and
found that n=22–30 is the most appropriate parameter with
which to calculate the response onset latencies by themethod
of Falzett et al. Thus, it seems that the correct level of n has to
be chosen for the binwidth. Despite the arbitrarily chosen n
value, the method of Falzett et al. still appears to be the most
reliable of the three techniques discussed above for numerous
neuronal response characteristics.

In order to exclude the subjective, arbitrary selection of the
parameters, the n value of the SOD and the window width, the
double sliding-window technique calculates the latencies by
using a series of constant parameters, and the median of the
latencies estimated for 25 constant parameter combinations
(see Results) defines the response onset latency of a single
neuron. It should be noted that the optimal parameter
combination set used here to calculate the response onset
latencymaybevalidonly for thisparticular studyandmaydiffer
from the optimal parameter combinations for other areas of the
central nervous system. Another weakness of automated
response onset latency estimation procedures is that the
arithmetical accuracy of latency value does not correlate with
the uncertainty of the estimation. In order to reduce such false
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estimations, preliminary visual inspection of the recordings or
preliminary, basic statistical probes are recommended.

With regard to its advantages and disadvantages, the
double sliding-window method offers a practical alternative
to other methods, such as subjective visual estimation,
Poisson spike-train analysis, the CUSUM procedure and the
method of Falzett et al. (1985). The reliability and reproduc-
ibility of the double sliding-window method allow its use in
the daily, routine calculation of neuronal response onset
latencies.
4. Experimental procedures

Themethod presented here was specifically developed for the
analysis of neuronal activity stored in PSTHs (Eördegh et al.,
2005). The original temporal resolution of the recoded data
was 1 ms, which was converted to a 5 ms binwidth for faster
processing. Each PSTH consisted of a prestimulus interval and
a peristimulus interval. The prestimulus interval contains the
genuine spontaneous activity of a neuron, while the peristi-
mulus interval contains both the spontaneous activity and the
responses of a neuron to the stimulation. The duration of the
spontaneous activity in the peristimulus interval defines the
onset latency of the neuronal response.

4.1. Response onset allocation via the t test

The first element of this computational method is a double
sliding-window technique with repetitive application of the t
test for dependent samples. A computer program slides two
virtual time windows with specific width along the spike
frequency histogram. The first window, called the reference
window, slides through the peristimulus histogram in 1 bin
steps (5 ms in our analysis), and the portion is selected where
the difference between the content of the reference window
and the average activity during the prestimulus period is the
highest. The reference window in this specific position
represents the maximum frequency (or the minimum fre-
quency if an inhibitory response is investigated) of the
peristimulus interval (Fig. 1a). The content of this window is
declared to be the ‘pure response’ and is applied later as a
reference in the t test. A second window, called the sample
window, slides from the beginning of the prestimulus period
(pure spontaneous activity) to the position of the reference
window in 1 bin steps. For each 1 bin step, a paired t test is
carried out between the spike rate of the reference and the
sample windows, and the level of significance (p value)
calculated from the t value is stored and plotted on a graph.
The accurate definition of the lengths of the windows is
reasonable, since a too narrow reference window may not
compensate the frequency variability inside the spontaneous
activity (i.e. a stochastic simultaneous excitation in several
trials may lead to an erroneous response identification when
the samplewindow is toonarrow to compensate it), while a too
broad sample window may include pure spontaneous activity
in addition to the response (especiallywhen thewindowwidth
is broader than the duration of the neuronal response).

This method calculates the similarity between a reference
window containing a pure neuronal response and a moving
sample window, which at the beginning of the evaluation
contains only pure spontaneous activity; later, it contains both
spontaneous and stimulated activity; and finally only pure
stimulated activity is present. Initially, when no response
occurs inside the sample window, the similarity is minimal
(the significance level is low). Afterwards, the sampling
window slides into the response period, finally reaching
total equivalence (significance level 1) as the two windows
overlap each other. A curve is fitted to the p values, in a
theoretical case this being a sigmoid curve (Fig. 1b). The time
interval between the start of the stimulation and the first
point of the ascending segment of this curve provides the
response onset latency.

4.2. Estimation of the onset of elevation

When a response occurs, the significance curve mentioned
above no longer fits one straight line, but consists of several
linear segments, each with a different slope. Each segment of
the curve produced by the sliding-window function describes
a different period of the neuronal activity and the slope of each
segment gives an estimate of the change in the neuronal
discharge rate during that segment according to the fixed
referencewindow. In Fig. 1b, the first segment represents pure
spontaneous activity, while the second component represents
the time segment when the sample window slides onto the
response period and contains spontaneous activity and also
neuronal responses. Finally, the third segment represents the
stage when the sample window clearly overlaps the response.
The slope of the second segment is steeper than that of the
first, indicating a ‘positive conformity change’ between the
two window contents. The elevation of the significance curve
is indifferent as regards the direction of the neuronal
discharge rate change, and thus our method can be used to
estimate the onset latency of both excitatory and inhibitory
neuronal responses. To estimate the latency quantitatively, a
SOD is calculated from the sliding-window function to
determine the first point of the elevating segment of the
significance curve. The aim of this function is to locate breaks
and discontinuities between linear segments.

Eq. (1) is used to produce such a function according to
Falzett et al. (1985):

SODðtÞ ¼ jðXðt�nÞ � XðtÞÞj � jðXðtþnÞ � XðtÞÞj ð1Þ

where X=the significance level; t=the actual time component
of the function; and n=Δt, an arbitrary time offset. SOD(t) is
computed for each point on the significance curve (Fig. 1c).

A zero value of this difference function means that no
change occurs in the steepness of the observed curve in the
vicinity of moment X(t). The peaks in the SOD curve furnish
estimates of the positions of maximal slope change, and thus
define the endpoints of each linear segment. The latency of
the response can be calculated by subtracting the time of the
stimulus onset from the minimum in SOD(t).

In order to eliminate sporadic disturbances in measure-
ment (estimation imprecision in the case of a single n value),
the method calculates the response onset latencies as a
median of 25measurements per registration, using 25 selected
different parameter combinations that provided the most
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accurate latencies for our data sample (4 different window
widths from 150 to 300 ms, and the corresponding highest
possible n values of SOD; Fig. 3a).

For the cell shown in Fig. 1, themaximumpossible n offset of
SOD function (30 bins)wasapplied (which is equal tohalf of the t
test window width (300 ms, 60 bins) as otherwise the SOD
function may run out of the range of the t test results), because
this value produced a relatively smooth SOD with well-defined
peaks. The analysis beganwith the 31st point of the significance
curve (t=31;n=30),with computationasdefinedby theequation
(SOD(31)= |(X(1)−X(31))|− |(X(61)−X(31))|). The next point of the sig-
nificance curve to the right of point 31was then selectedand the
process was repeated until the entire difference curve had been
generated (SOD(32)= |(X(2)−X(32))|− |(X(62)−X(32))|).

4.3. Statistical evaluation of onset latencies

Visual latency estimation was performed independently by all
three authors (experienced neurophysiologists). The mean of
the three subjectively quantified latencies was regarded as the
gold standard during the comparison, and EE was calculated
for each latency by different techniques via the following
equation:

EE ¼ jLt � Lsj ð2Þ

where Lt is the onset latency acquired by the automated
latency estimation method used, and Ls is the visually
quantified gold standard value.

The EE results did not indicate a normal distribution
according to the Lilliefors test (pb0.01), and the Wilcoxon
test for correlated samples was therefore used to compare the
EE results of the different calculation methods.

4.4. Recording and stimulation

The visual responses of 681 neurons (10 in the suprageniculate
nucleus, 238 in the anterior ectosylvian visual area, 20 in the
caudate nucleus, 228 in the substantia nigra, 80 in the superior
colliculus and 105 in the primary visual cortex) of the feline
brainwere analyzed in this study. The animal preparation, the
surgery and the other details of data collection were described
in our earlier papers (Eördegh et al., 2005; Nagy et al., 2005;
Paróczy et al., 2006).
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